1. Which ordered pair represents a linear function?
A. $(-2,-15),(-1,-9),(0,-3),(1,3)$, and $(2,9)$
B. $(-2,4),(-1,1),(0,0),(1,1)$, and $(2,4)$
C. $(-2,-1),(-1,-4),(0,-5),(1,-4)$ and $(2,-1)$
D. $(-2,-8),(-1,-1),(0,0),(1,1)$, and $(2,8)$
2. The following ordered pairs represent a function: $(-2,10),(-1,7),(0,6),(1,7)$, and $(2,10)$. Which equation could represent the function?
F. $y=-4 x+2$
G. $y=x^{2}-6$
H. $y=5 x$
I. $y=x^{2}+6$
3. Which rule could represent the function shown by the table at the right?
A. $y=-x^{3}$
B. $y=x^{2}+1$
C. $y=-x^{2}+1$
D. $y=-x-1$

\boldsymbol{x}	\boldsymbol{y}
-2	-3
-1	0
0	1
1	0
2	-3

4. The ordered pairs $(-1,1),(0,2),(1,1),(2,-2)$, and $(3,-7)$ represent a function. Which rule could represent the function?
F. $y=-x^{2}-2$
G. $y=-x^{2}+2$
H. $y=x^{2}-2$
I. $y=x^{2}+2$
5. Which ordered pair represents a nonlinear function?
A. $(0,0),(1,1),(2,2),(3,3)$, and $(4,4)$
B. $(0,0),(1,-1),(2,-2)$, and $(4,-4)$
C. $(0,-1),(1,0),(2,1),(3,2)$, and $(4,3)$
D. $(0,0),(1,1),(2,8),(3,27)$, and $(4,64)$
6. A certain function fits the following description. As the value of x increases by 1 each time, the value of y decreases by the square of x. Is this function linear or nonlinear? Explain your answer.
7. The rule $C=6.3 r$ gives the approximate circumference D of a circle as a function of its radius r. Identify the independent and dependent variable in this relationship. Explain your reasoning.
