6.4 Applications of Linear Systems (D1)

SWBAT translate a break-even word problem into a system of linear equations and solve.
Finding a Break-Even Point
Step 1: \qquad the problem
the \qquad
Step 2: Underline or \qquad (they are found in the question)
Step 3: Define the \qquad
Step 4: Reread the problem and \qquad (one cost, one profit)
Step 5: Set the \qquad to each other and solve!

1. A fashion designer makes and sells hats. The material for each hat costs $\$ 5.50$. The hats sell for $\$ 12.50$ each. The designer spends $\$ 1400$ on advertising. How many hats must the designer sell to break even?

Set Up:
Equations:
Let \qquad $=$ \qquad
Let \qquad $=$ \qquad
SOLVE:
2. A puzzle expert wrote a new Sudoku puzzle book. His initial costs are $\$ 864$. Binding and packaging each book cost $\$ 0.80$. The price of the book is $\$ 2$. How many copies must be sold to break even?

Set Up:

Equations:
Let \qquad $=$ \qquad
Let \qquad $=$ \qquad

SOLVE:
3. A bicycle store costs $\$ 2400$ per month to operate. The store pays an average of $\$ 60$ per bike. The average selling price of each bicycle is $\$ 120$. How many bicycles must the store sell each month to break even? ?

Set Up:

Let \qquad $=$ \qquad
Let \qquad $=$ \qquad

SOLVE:
4. Producing a musical cost $\$ 88,000$ plus $\$ 5900$ per performance. One sold-out performance earns $\$ 7500$ in revenue. If every performance sells out, how many performances are needed to break even?

Set Up:

Equations:

Let \qquad $=$ \qquad
Let \qquad $=$ \qquad

SOLVE:
5. A carpenter makes and sells rocking chairs. The material for each chair costs $\$ 22.50$. The chairs sell for $\$ 75$ each. If the carpenter spends $\$ 420$ on advertising, how many chairs must she sell to break even?

Set Up:
Equations:
Let \qquad
\qquad
Let \qquad $=$ \qquad
\qquad

SOLVE:

Solving Word Problems with Two Variables

Step 1: Read the problem
Step 2: Underline or highlight the question
Step 3: Define the variables (they are found in the question)
Step 4: Reread the problem and write the equations
Step 5: Solve!
6. The sum of two numbers is 73 . When the smaller number is subtracted from twice the greater number, the result is 50 . Find the two numbers.

Set Up:

Equations:
Let \qquad $=$ \qquad
Let \qquad $=$ \qquad
\qquad

SOLVE:
7. The length of a rectangle is 5 cm less than three times its width. If the perimeter is 70 cm , find the area of the rectangle.

Set Up:
Equations:
Let \qquad $=$ \qquad
Let \qquad $=$ \qquad
SOLVE:
8. John has 15 coins, all dimes and quarters, worth $\$ 2.55$. How many dimes and how many quarters does John have?

Set Up:

Equations:
Let \qquad $=$ \qquad
Let \qquad $=$ \qquad
SOLVE:
9. Tickets for the senior play cost $\$ 4$ for adults and $\$ 2$ for students. This year there were 600 tickets sold, and the class made $\$ 1900$. How man7y of each type of ticket was sold?

Set Up:

Equations:

Let \qquad $=$ \qquad
Let \qquad $=$ \qquad

SOLVE:
10. Kathleen invested $\$ 5000$, some at 6% and the rest at 5%. Her annual income from the investments is $\$ 280$. How much is invested at 5% ?

Set Up:
Equations:
Let \qquad $=$ \qquad
Let \qquad $=$ \qquad
SOLVE:
11. A baseball manager bough 4 bats and 9 balls for $\$ 168.75$. On another day, he bought 3 bats and 1 dozen balls for $\$ 172.50$. How much did he pay for each bat and each ball?

Set Up:

Equations:
Let \qquad $=$ \qquad
Let \qquad $=$ \qquad

SOLVE:
12. CHALLENGE: You want to sell 1 lb jars of mixed peanuts and cashews for $\$ 5$. You pay $\$ 3$ per pound for peanuts and $\$ 6$ per pound for cashews. You plan to combine 4 parts peanuts and 1 part cashews to make your mix. You have spent $\$ 70$ on materials to get started. How many jars must you sell to break even?

Set Up:

Let \qquad $=$ \qquad
Equations:
\qquad
Let \qquad $=$ \qquad
SOLVE:

Solve each system. Explain why you chose the method you used.

14. $4 x+5 y=3$
$3 x-2 y=8$

$$
\text { 15. } \begin{aligned}
& 2 x+7 y=-20 \\
& y=3 x+7
\end{aligned}
$$

$x-2 y=8$

