6.4 Applications of Linear Systems (D1)

SWBAT translate a break-even word problem into a system of linear equations and solve.

Finding a Break-Even Point		
Step 1: Step 2: Underline or Step 3: Define the Step 3: Define the Step 4: Reread the problem and Step 5: Set the A fashion designer makes and sells hats. The materic The designer spends \$1400 on advertising. How man	the problem the (they are found in the question) (one cost, one profit) to each other and solve! If for each hat costs \$5.50. The hats sell for \$12.50 each. y hats must the designer sell to break even?	
<u>Set Up</u> :	Equations:	
Let =		
Let =		
SOLVE:		
A puzzle expert wrote a new Sudoku puzzle book. His initial costs are \$864. Binding and packaging each book cost \$0.80. The price of the book is \$2. How many copies must be sold to break even? Set Up: Equations:		
Let =		
Let =		

<u>SOLVE:</u>

3. A bicycle store costs \$2400 per month to operate. The store pays an average of \$60 per bike. The average selling price of each bicycle is \$120. How many bicycles must the store sell each month to break even?

<u>.</u> <u>Set Up</u> :	Equations:
Let =	
Let =	
SOLVE:	

 4. Producing a musical cost \$88,000 plus \$5900 per performance. One sold-out performance earns \$7500 in revenue. If every performance sells out, how many performances are needed to break even?
 <u>Set Up</u>: <u>Equations</u>:

Let =	
Let =	
SOLVE:	

Math 1

1.

2.

A carpenter makes and sells rocking chairs. The material for each chair costs \$22.50. The chairs sell for \$75 each. If the carpenter spends \$420 on advertising, how many chairs must she sell to break even?
 Set Up:

Let=	
Let =	
<u>SOLVE:</u>	

Solving Word Problems with Two Variables

 Step 1: Read the problem

 Step 2: Underline or highlight the question

 Step 3: Define the variables (they are found in the question)

 Step 4: Reread the problem and write the equations

 Step 5: Solve!

6. The sum of two numbers is 73. When the smaller number is subtracted from twice the greater number, the result is 50. Find the two numbers.

<u>Set Up</u> :	<u>Equations</u> :
Let =	
Let =	
SOLVE:	

7. The length of a rectangle is 5 cm less than three times its width. If the perimeter is 70 cm, find the area of the rectangle.

0	<u>Set Up</u> :	Equations:
Let	_ =	
Let	_ =	
<u>SOLVE:</u>		

8. John has 15 coins, all dimes and quarters, worth \$2.55. How many dimes and how many quarters does John have?

<u>Set Up</u> :	<u>Equations</u> :
Let =	
Let =	
SOLVE:	

9. Tickets for the senior play cost \$4 for adults and \$2 for students. This year there were 600 tickets sold, and the class made \$1900. How man7y of each type of ticket was sold?

	<u>Set Up</u> :	<u>Equations</u> :	
Let =			
Let =			
SOLVE:			

10. Kathleen invested \$5000, some at 6% and the rest at 5%. Her annual income from the investments is \$280. How much is invested at 5%?

<u>Set Up</u> :	<u>Equations</u> :
Let =	
Let =	
SOLVE:	

11. A baseball manager bough 4 bats and 9 balls for \$168.75. On another day, he bought 3 bats and 1 dozen balls for \$172.50. How much did he pay for each bat and each ball?

	<u>Set Up</u> :	<u>Equations</u> :	
Let =			
Let =			
<u>SOLVE:</u>			

12. CHALLENGE: You want to sell 1 lb jars of mixed peanuts and cashews for \$5. You pay \$3 per pound for peanuts and \$6 per pound for cashews. You plan to combine 4 parts peanuts and 1 part cashews to make your mix. You have spent \$70 on materials to get started. How many jars must you sell to break even?

	<u>Set Up</u> :	Equations:
Let =		
Let =		
SOLVE:		

Solve each system. Explain why you chose the method you used.

14. 4x + 5y = 3
3x - 2y = 8**15.** 2x + 7y = -20
y = 3x + 7**16.** 5x + 2y = 17
x - 2y = 8