SWBAT write and graph linear inequalities to model situations.

Words to Recognize

- No More Than: \qquad
- No Less Than: \qquad
- At Least: \qquad
- At Most: \qquad

Situation \#1: PARTY NUTS.
Zark is buying peanuts and cashews for a party. He can spend no more than $\$ 24$. Peanuts cost $\$ 2$ per pound and cashews cost $\$ 3$ per pound.

Let $x=$ number of pounds of peanuts
Let $y=$ number of pounds of cashews
Inequality: \qquad
X-intercept: \qquad Y-intercept: \qquad

1. Which of the following is a solution of the inequality:
a. $(2,8)$
b. $(4,6)$
c. $(8,2)$
2. What is the greatest number of pounds of peanuts that Zark can buy?
3. If $x=6 \mathrm{lb}$, what are all possible values of y ?

Situation \#2: RUB-A-DUB-DUB.

Kara is filling her bathtub. The cold water flows at a rate of $4 \mathrm{gal} / \mathrm{min}$. The hot water flows at a rate of 3 $\mathrm{gal} / \mathrm{min}$. Kara wants no more than 60 gal of water in the tub.

> Let $x=$ time that cold water is turned on
> Let $y=$ time that hot water is turned on

Inequality: \qquad
X-intercept: \qquad Y-intercept: \qquad
4. Which of the following is a solution of the inequality:
a. $(5,16)$
b. $(10,4)$
c. $(12,5)$
5. How many minutes will it take to get 60 gal of water if only cold water is turned on?
6. If $x=3 \mathrm{~min}$, what are all possible values of y ?

Situation 3: Time Management

You are planning on what to do after school. You can spend at most 6 hours daily playing basketball and doing homework. You want to spend less than 2 hours playing basketball. You must spend at least $1 \frac{1}{2}$ hour on homework. What is a graph showing how you can spend your time?

Let $x=$ the number of hours playing basketball.
Let $y=$ the number of hours doing homework.
Inequalities: \qquad
X-intercept: \qquad Y-intercept: \qquad

Situation \#4 Dog Care

A dog walker earns 15 per hour. She also earns $\$ 12$ per hour for babysitting. She wants to earn at least $\$ 300$ next week, but can work no more than 30 hours. What is a graph showing how many hours she can work at each job?

Let $\mathrm{x}=$ the amount earned walking dogs
Let $y=$ the amount earned babysitting
Inequalities: \qquad
X-intercept: \qquad Y-intercept: \qquad

Situation \#5: SUMMER JOBS.

Suppose you have a job mowing lawns that pays $\$ 12$ per hour. You also have a job at a clothing store that pays $\$ 10$ per hour. You need to earn at least $\$ 350$ per week, but you can work no more than 35 h per week. You must work a minimum of 10 hr per week at the clothing store. What is a graph showing how many hours per week you can work at each job

$$
\begin{aligned}
& \text { Let } x= \\
& \text { Let } y=
\end{aligned}
$$

Inequality: \qquad
X-intercept: \qquad Y-intercept: \qquad
7. Which of the following is a solution of the inequality:
a. $(20,12)$
b. $(5,20)$
c. $(20,40)$
8. How many hours can you work at the clothing store if you work 25 hours mowing lawns?
9. If $x=20 \mathrm{~min}$, what are all possible values of y ?

Situation \#6: ROAD TRIPS.

Two friends agree to split the driving on a road trip form Philadelphia, Pennsylvania, to Denver, Colorado. One friend drives at an average speed of $60 \mathrm{mi} / \mathrm{hr}$. The other friend drives at an average speed of $55 \mathrm{mi} / \mathrm{hr}$. They want to drive at least 500 mi per day. They plan to spend no more than 10 h driving each day. The friend who drives slower wants to drive fewer hours. What is a graph showing how they can split the driving each day?

$$
\text { Let } x=
$$

$$
\text { Let } y=
$$

Inequality: \qquad
X-intercept: \qquad Y-intercept: \qquad
10. Which of the following is a solution of the inequality:

$$
\begin{array}{lll}
\text { a. }(8,4) & \text { b. }(2,7) & \text { c. }(1,8)
\end{array}
$$

11. How many hours will the faster driver be able to drive if the slower driver drives 4 hours?
12. If $x=3$, what are all possible values of y ?

Graphing Calculator:

Write and graph a system of inequalities that models the situation. Circle the number-letter pair for each ordered pair that is a solution. Write the letter in the matching numbered box at the bottom.

Situation 1: SOMETHING FISHY.

The owner of Fred's Fish Market orders cod and salmon. He wants to buy at least 50 pounds of fish but cannot spend more than $\$ 300$. Cod is $\$ 4$ per pound and salmon is $\$ 7$ per pound.

$$
\begin{aligned}
& \text { Let } x=\text { pounds of cod } \\
& \text { Let } y=\text { Pounds of salmon }
\end{aligned}
$$

Inequality \#1: \qquad
X-intercept: \qquad Y-intercept: \qquad
Inequality \#2: \qquad
X-intercept: \qquad Y-intercept: \qquad

Which of the following are solutions?
$8 \cdot \mathrm{E}(40,15)$
$11 \cdot P(50,18)$
4•S (30, 20)
10•U $(55,8)$
$7 \cdot \mathbf{R}(20,35)$

Situation \#2: FLOWER POWER.

Mr. Bloom is designing a rectangular flower garden with a fence around it. He can use no more than 80 ft of fencing. He wants the width to be at least 5 ft and the length to be at least 20 ft .

$$
\begin{aligned}
& \text { Let } x=\text { width of the garden }(\mathrm{ft}) \\
& \text { Let } y=\text { length of the garden }(\mathrm{ft})
\end{aligned}
$$

Inequality \#1: \qquad
X-intercept: \qquad Y-intercept: \qquad
Inequality \#2: \qquad
Inequality \#3: \qquad

Which of the following are solutions?
7•S $(10,23) \quad 11 \cdot \mathrm{E}(7,30)$
9•T $(18,25)$
3.A $(8,35)$
2•I (20, 20)

Situation \#3: SPRING FLING.

Tickets for the Spring Dance cost $\$ 3$ per person or $\$ 5$ per couple. To cover expenses, at least $\$ 750$ worth of tickets must be sold. However, no more than 400 people can fit in the gym where the dance is being held.

Let $x=$ number of $\$ 3$ tickets sold
Let $y=$ number of $\$ 5$ tickets sold
Inequality \#1: \qquad
X-intercept: \qquad Y-intercept: \qquad
Inequality \#2: \qquad
X-intercept: \qquad Y-intercept: \qquad

Which of the following are solutions?
$5 \cdot H(50,110) \quad 12 \cdot \mathrm{~L}(150,70)$ $9 \cdot 9(280,45)$
6.U (300, 60) $\quad 3 \cdot T(0,200)$

<|||l|l|l|l|l|l|l|l|l|l|l|l|l| | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | 7 | 8 | 9 | 10 | 11 |
| 12 | 13 | | | | |

