6.7 Linear Programming (Day 1)

Unit 3 Day 8

SWBAT write and graph linear inequalities to model situations.

, , , ,	Words to Recognize	Steps to Solving:
1		Step 1: Read the problem and underline the question
•	No More Than:	Step 2: Define the variables (found in the question)
•	No Less Than:	Step 3: Write an inequality (pay attention to the key words)
•	At Least:	Step 4: Use the cover-up method to graph the
1		inequality (if in standard form)
•	At Most:	Step 4: Shade the inequality
' ' 		Step 5: Answer the question

Situation #1: PARTY NUTS.

Zark is buying peanuts and cashews for a party. He can spend no more than \$24. Peanuts cost \$2 per pound and cashews cost \$3 per pound.

Let x = number of pounds of peanuts Let y = number of pounds of cashews

Inequality:

X-intercept: _____ Y-intercept: _____

- a. (2, 8)
 b. (4, 6)
 c. (8, 2)
- 2. What is the greatest number of pounds of peanuts that Zark can buy?

3. If x = 6 lb, what are all possible values of y?

Situation #2: RUB-A-DUB-DUB.

Kara is filling her bathtub. The cold water flows at a rate of 4 gal/min. The hot water flows at a rate of 3 gal/min. Kara wants no more than 60 gal of water in the tub.

Let x = time that cold water is turned on Let y = time that hot water is turned on					
Inequality:					
X-intercept:	_ Y-intercept:				

- **4.** Which of the following is a solution of the inequality:
 a. (5, 16)
 b. (10, 4)
 c. (12, 5)
- 5. How many minutes will it take to get 60 gal of water if only cold water is turned on?

6. If x = 3 min, what are all possible values of y?

Situation 3: Time Management

You are planning on what to do after school. You can spend at most 6 hours daily playing basketball and

doing homework. You want to spend less than 2 hours playing basketball. You must spend at least 1 $\frac{1}{2}$ hour on homework. What is a graph showing how you can spend your time?

Let x = the number of hours playing basketball. Let y = the number of hours doing homework.

Inequalities:

X-intercept: _____ Y-intercept: _____

Situation #4 Dog Care

A dog walker earns 15 per hour. She also earns \$12 per hour for babysitting. She wants to earn at least \$300 next week, but can work no more than 30 hours. What is a graph showing how many hours she can work at each job?

> Let x = the amount earned walking dogs Let y = the amount earned babysitting

Inequalities:

X-intercept: _____ Y-intercept: _____

Situation #5: SUMMER JOBS.

Suppose you have a job mowing lawns that pays \$12 per hour. You also have a job at a clothing store that pays \$10 per hour. You need to earn at least \$350 per week, but you can work no more than 35 h per week. You must work a minimum of 10 hr per week at the clothing store. What is a graph showing how many hours per week you can work at each job

	Let x = Let y =					
Ine	Inequality:					
	X-intercept:	Y-intercept:				
7.	Which of the following is a solution of the inequality: a. (20, 12) b. (5,20)		c. (20, 40)			

8. How many hours can you work at the clothing store if you work 25 hours mowing lawns?

Situation #6: ROAD TRIPS.

Two friends agree to split the driving on a road trip form Philadelphia, Pennsylvania, to Denver, Colorado. One friend drives at an average speed of 60 mi/hr. The other friend drives at an average speed of 55 mi/hr. They want to drive at least 500 mi per day. They plan to spend no more than 10 h driving each day. The friend who drives slower wants to drive fewer hours. What is a graph showing how they can split the driving each day?

	Let x = Let y =		
Ine	quality:		
	X-intercept:	Y-intercept:	
10.	Which of the followin a. (8, 4)	ig is a solution of the inequality: b. (2,7)	c. (1,8)
11.	How many hours will drives 4 hours?	the faster driver be able to drive	e if the slower driver

12. If x = 3, what are all possible values of y?

Graphing Calculator:

Write and graph a system of inequalities that models the situation. Circle the number-letter pair for each ordered pair that is a solution. Write the letter in the matching numbered box at the bottom.

Situation 1: SOMETHING FISHY. The owner of Fred's Fish Market	orders cod and salmon. He war				but co		spend	more
than \$300. Cod is \$4 per pound	and salmon is \$7 per pound.	10 10 20) di local o ▲ ປ	o poorie		1 801 00		porta	
Let $x = pounds$ of cod		50						7
Let y = Pounds of salmo	n	40 —						-
Inequality #1:		30—	_					-
X-intercept:	Y-intercept:	20						-
Inequality #2:		10	_					
X-intercept:	Y-intercept:			2 30	40 5			x
Which of the following are called		. 🕈	10 20	5 00	40 5	5 60	10	00
RAP (40 15) 110P	(50 18) (30 20)	1011 (55	8) 🗲	7.12	'90 3	5)		
			0)		20, 0	0)		
Situation #2: FLOWER POWER.			A 77					
Mr. Bloom is designing a rectang	gular flower garden with a fence encing. He wants the width to be	e around it. He e at least 5 ft	<u> </u>		<u> </u>	<u> </u>		
and the length to be at least 20	ft.		40				++	_
Let $x = width of the gard$	den (ft)							
Let y = length of the ga	rden (ff)		30				+	-
Inequality #1:			20					
X-intercept:	Y-intercept:							
las quelita #0.			10 —			$\left \right $		_
	<u> </u>		-					
Inequality #3:				<u>10</u>	20	30	40	<u>, 1</u>
Which of the following are soluti	ons?		¥	.0	20	00	.0	
7•S (10, 23) 11•E	(7, 30) 9. T (18, 25	5) 3• A (8, 1	35)	2•I	(20,	20)		
Situation #3: SPRING FUNG								
Tickets for the Spring Dance cos	t \$3 per person or \$5 per couple	. To cover expense	es, at lea	ast \$750) worth	of tick	ets mu	ust be
sold. However, no more than 40)0 people can fit in the gym whe	ere the dance is be	ing helc	1.				
Let x = number of \$3 tic	kets sold	Î.	y .	1 . 1	·			
Let y = number of \$5 fic	kets sold							
Inequality #1:		[
X-intercept:	Y-intercept:	-						
Inequality #2:		100 -		+				
····		50		╁──┼				
X-intercept:	Y-Intercept:							
Which of the following are soluti	ons?	¥	50	00				
5•H (50, 110) 12•I	(150, 70) 9•9 (280,	45) 6•U (\$	300, 6	0)	3•T	(0, 20)0)	
			· · · · · · · · · · · · · · · · · · ·					