Linear Programing is a method for finding a \qquad or \qquad value of some quantity, given a \qquad .

The constraints are a system in inequalities that when graphed give you a \qquad .
(It contains all the points that satisfy the constraints)
The quantity you are trying to minimize or maximize is the \qquad .

Graph each system of constraints. Name all vertices.
The objective function is normally a \qquad or \qquad function.

Steps to Solving a Linear Programming System of Inequalities

Step 1: Graph the system of inequalities (the constraints)
Step 2: Write the coordinates of the feasible region (extreme points of the system)
Step 3: Substitute the coordinates into the objective function to determine the maximum or minimum value of the function.

Graph the following:

```
x+2y\leq5
x-y\leq2
x}\geq
y}\geq
Evaluate P=x+3y at each
vertex
```


Graph each system of constraints. Name all vertices. Then find the values of x and y that maximize or minimize the objective function.

1. $\left\{\begin{array}{l}y \leq-x+3 \\ y \leq-\frac{1}{2} x+2 \\ x \geq 0, y \geq 0\end{array}\right.$
Maximum for
$P=-4 x+3 y$
2. $\left\{\begin{array}{l}y \leq-x+4 \\ y \leq-\frac{1}{3} x+2 \\ x \geq 0, y \geq 0\end{array}\right.$
Minimum for
$P=2 x+3 y$
$\left\{y \leq \frac{1}{2} x+2\right.$
3. $\{y \leq-x+8$
$x \geq 2, y \geq 1$
Maximum for
$P=x-4 y$

Graph each system of constraints. Name all vertices. Then find the values of x and y that maximize or minimize the objective function. Find the maximum or minimum value.
4. $\left\{\begin{array}{l}y \leq-3 x+7 \\ 2 y+x \leq 9 \\ x \geq 0, y \geq 0\end{array}\right.$

Minimum for
$P=2 x+y$
5. $\left\{\begin{array}{l}y-5 \leq 4 x \\ y+x \leq 10 \\ x \geq 0, y \geq 3\end{array}\right.$

Maximum for
$P=7 x-5 y$
6. $\left\{\begin{array}{l}3 y \leq-x+9 \\ y+2 x \leq 8 \\ x \geq 0, y \geq 0\end{array}\right.$

Maximum for
$P=4 x+y$

