Practice

The Quadratic Formula and the Discriminant

Use the quadratic formula to solve each equation.

1.
$$7c^2 + 8c + 1 = 0$$

2.
$$2w^2 - 28w = -98$$

3.
$$2i^2 - 3i = -1$$

4.
$$2x^2 - 6x + 4 = 0$$

5.
$$2n^2 - 6n = 8$$

6.
$$-7d^2 + 2d + 9 = 0$$

7.
$$2a^2 + 4a - 6 = 0$$

7.
$$2a^2 + 4a - 6 = 0$$
 8. $-3p^2 + 17p = 20$

9.
$$4d^2 - 8d + 3 = 0$$

Use the quadratic formula to solve each equation. Round answers to the nearest hundredth.

10.
$$h^2 - 2h - 2 = 0$$

11.
$$5x^2 + 3x = 1$$

12.
$$-z^2 - 4z = -2$$

13.
$$t^2 + 10t = -22$$

14.
$$3n^2 + 10n = 5$$

13.
$$t^2 + 10t = -22$$
 14. $3n^2 + 10n = 5$ **15.** $s^2 - 10s + 14 = 0$

16. A basketball is passed through the air. The height h of the ball in feet after the distance d in feet the ball travels horizontally is given by $h = -d^2 + 10d + 5$. How far horizontally from the player passing the ball will the ball land on the ground?

Which method(s) would you choose to solve each equation? Justify your reasoning.

17.
$$h^2 + 4h + 7 = 0$$

17.
$$h^2 + 4h + 7 = 0$$
 18. $a^2 - 4a - 12 = 0$

19.
$$24y^2 - 11y - 14 = 0$$

20.
$$2p^2 - 7p - 4 = 0$$

21.
$$4x^2 - 144 = 0$$

22.
$$f^2 - 2f - 35 = 0$$

23. Writing Explain how the discriminant can be used to determine the number of solutions a quadratic equation has.

Practice (continued)

Form G

The Quadratic Formula and the Discriminant

Find the number of real-number solutions of each equation.

24.
$$x^2 - 8x + 7 = 0$$

25.
$$x^2 - 6x = 0$$

26.
$$2x^2 - 5x + 16 = 0$$

27.
$$-3x^2 - 4x - 8 = 0$$

27.
$$-3x^2 - 4x - 8 = 0$$
 28. $7x^2 + 12x - 21 = 0$ **29.** $2x^2 + 4x + 2 = 0$

29.
$$2x^2 + 4x + 2 = 0$$

Use any method to solve each equation. If necessary, round answers to the nearest hundredth.

30.
$$5m^2 - 3m - 15 = 0$$

31.
$$9y^2 + 6y = -12$$

32.
$$4a^2 = 36$$

33.
$$6t^2 - 96 = 0$$

34.
$$z^2 + 7z = -10$$

34.
$$z^2 + 7z = -10$$
 35. $-g^2 + 4g + 3 = 0$

Find the value of the discriminant and the number of real-number solutions of each equation.

36.
$$x^2 + 11x - 10 = 0$$

37.
$$x^2 + 7x + 8 = 0$$

38.
$$3x^2 + 5x - 9 = 0$$

39.
$$-2x^2 + 10x - 1 = 0$$
 40. $3x^2 + 6x + 3 = 0$ **41.** $6x^2 + x + 12 = 0$

40
$$3x^2 + 6x + 3 = 0$$

41
$$6x^2 + x + 12 = 0$$

- **42.** The weekly profit of a company is modeled by the function $w = -g^2 + 120g 28$. The weekly profit, w, is dependent on the number of gizmos, g, sold. If the breakeven point is when w = 0, how many gizmos must the company sell each week in order to break even?
- **43. Reasoning** The equation $4x^2 + bx + 9 = 0$ has no real-number solutions. What must be true about *b*?
- **44. Open-Ended** Describe three different methods to solve $x^2 x 56 = 0$. Tell which method you prefer. Explain your reasoning.