

Y-Intercept:
X-Intercept (root, zero, solution): \qquad AOS Formula
Vertex:
Axis of Symmetry:
"a" Value:
Parabola:

Essential Understanding: A quadratic function is a type of nonlinear function that models certain situations where the rate of change is \qquad . The graph of a quadratic function is a \qquad
\qquad with the highest or lowest point corresponding to the \qquad or \qquad value.

The simplest quadratic function $f(x)=x^{2}$ or $y=x^{2}$. This is called the
\qquad —.
$a x^{2}+b c+c$
Parabola opens \qquad
Vertex is the \qquad point or the \qquad point of the parabola
$-a x^{2}+b x+c$
Parabola opens \qquad
Vertex is the \qquad point or the \qquad point of the parabola

Example 1: Find the vertex for each function
A

B

You can use the fact that a parabola is symmetric to graph it quickly.

- Find the \qquad of the vertex and several point on one side of the vertex
the points across the axis of symmetry

Example 2: $G r a p h y=a x^{2} \quad y=1 / 3 x^{2}$

x	$Y=1 / 3 \mathbf{x}^{2}$	x, y

The coefficient of the x^{2} - term in a quadratic function affects the width of a parabola as well as the direction in which it opens.

- Larger numbers \qquad the graph so it gets closer together
- Fractions makes the graph \qquad —.
- Negative sign \qquad the graph.

The y-axis is the axis of symmetry for graphs of functions $y=a x^{2}+c$. The c translates the graph \qquad .

Example 4: Graphing $y=a x^{2}+c$

X	$Y=2 x^{2}$	$Y=2 x^{2}+3$

As an object falls, its speed continues to increase, so its height above the ground decreases at a faster and faster rate. Ignoring air resistance, you can model the object's height with the function $\mathrm{h}=-16 \mathrm{t}^{2}+\mathrm{c}$. The height h is in feet, the time t is in seconds, and the object's initial height c is in feet.

Example 5: An acorn drops from a tree branch 20 ft above the ground. The function $\mathrm{h}=-16 \mathrm{t}^{2}+20$ gives the height h of the acorn (in feet) after t seconds. What is the graph of this quadratic function? At about what time does the acorn hit the ground?

Practice: Using the information from above, suppose the acorn drops from a tree branch 70 ft . above the ground. The function $\mathrm{h}=-16 \mathrm{t}^{2}+70$ gives the height h of the acorn. What is the graph of the function? About what time would the acorn hit the ground? What are reasonable domain and range for the original function?

Practice: For a physics experiment, the class drops a golf ball off a bridge toward the pavement below. The bridge is 75 feet high. The function $\mathrm{h}=-16 t^{2}+75$ gives the golf ball's height h above the pavement (in feet) after \dagger seconds. Graph the function. How many seconds does it take for the golf ball to hit the pavement?

