Properties: Zero and Negative Exponents

Zero as an Exponent	For every nonzero number a, $a^{0}=1$	Examples:
Negative Exponent	For every nonzero number a and integer n, $a^{-1}=\frac{1}{a^{n}}$	Examples:

Zero Base and Zero Exponents

Why can't you use 0 as a base and an exponent? Solve each of the following. $3^{0}=\quad 2^{0}=\quad 1^{0}=\quad 0^{0}=$

However, consider the following pattern.
$0^{3}=$
$0^{2}=$
$0^{1}=$
$0^{0}=$

It is not possible for 0^{0} to equal both 1 and 0 . Therefore, 0^{0} is \qquad -.

Simplifying Powers

What is the simplified form of each expression?
a) $9^{-2}=$
b) $3.6^{0}=$

Got it? What is the simplified form of each expression?
a) $4^{-3}=$
b) $(-5)^{0}=$
C) $3^{-2}=$
d) $6^{-1}=$
e) $(-4)^{-2}=$

Simplifying Exponential Expressions

What is the simplified form of each expression?
a) $5 a^{3} b^{-2}$
b) $\frac{1}{x^{-5}}=$

Got it? What is the simplified form of each expression?
a) $x^{-9}=$
b) $\frac{1}{n^{-3}}=$
C) $4 c^{-3} b=$
d) $\frac{2}{a^{-3}}=$
e) $\frac{n^{-5}}{m^{2}}=$

Evaluating an Exponential Expression

What is the value of $3 s^{3} t^{-2}$ for $s=2$ and $t=-3$?

Got it? What is the simplified form of each expression if $n=-2$ and $w=5$?
a) $n^{-4} w^{0}$
b) $\frac{n^{-1}}{w^{2}}$
C) $\frac{n^{0}}{w^{6}}$
d) $\frac{1}{n w^{-1}}$

Dividing Powers with the Same Base		
To divide powers with the same base, subtract the exponents.	$\frac{a^{m}}{a^{n}}=$	$\frac{x^{4}}{x^{7}}=$

Why it Works: Use repeated multiplication to rewrite the product of powers: $38 \div 3^{6}=$?

1. Expand each into the product numbers to the right.

$$
\frac{3^{8}}{3^{6}}=(\square)=
$$

Dividing Algebraic Expressions

What is each expression written using each base only once?
a) $\frac{4 x^{8}}{2 x^{3}}=$
b) $\frac{9 m^{2} n^{4}}{-12 m^{5} n^{3}}=$
c) $\frac{-9 k^{6} j^{2}}{36 k j^{5}}=$
d) $\frac{5^{-2} a^{-3} b^{7}}{2 a^{5} b^{2}}=$

Raising a Quotient to a Power		
To raise a quotient to a power, raise the numerator and the denominator to the power and simplify.	$\left(\frac{a}{b}\right)^{n}=$	$\left(\frac{3}{5}\right)^{3}=$

Why it Works: Use repeated multiplication to rewrite the product of powers: $\left(\frac{x}{y}\right)^{3}$

1. Expand each into the product numbers to the right.

$$
\left(\frac{x}{y}\right)^{3}=\square=\square=
$$

Raising a Quotient to a Power

a) What is the simplified form of $\left(\frac{z^{4}}{5}\right)^{3}$?
b) What is the simplified form of $\left(\frac{4}{x^{3}}\right)^{2}$?

Raising a Quotient to a Negative Power		
To raise a quotient to a negative power, raise the numerator and the denominator to the power and simplify.	$\left(\frac{a}{b}\right)^{-n}=$	$\left(\frac{h}{g}\right)^{-3}=$

Simplifying an Exponential Expression

a) What is the simplified form of $\left(\frac{2 x^{6}}{y^{4}}\right)^{-3}$?
b) What is the simplified form of $\left(\frac{a}{5 b}\right)^{-2}$?

