Zero and Negative Exponents

Exponent Unit Day 1

Properties: Zero and Negative Exponents				
Zero as an Exponent	For every nonzero number a , $a^0 = 1$	Examples:		
Negative Exponent	For every nonzero number a and integer n , $a^{-1} = \frac{1}{a^n}$	Examples:		

Zero Base and Zero Exponents

Why can't you use 0 as a base and an exponent? Solve each of the following.

$$2^{0} =$$

$$0^{0} =$$

However, consider the following pattern.

$$0^2 =$$

$$0^1 =$$

$$0^0 =$$

It is not possible for 0^0 to equal both 1 and 0. Therefore, 0^0 is ______.

Simplifying Powers

What is the simplified form of each expression?

a)
$$9^{-2} =$$

b)
$$3.6^{\circ} =$$

Got it? What is the simplified form of each expression?

a)
$$4^{-3} =$$

a)
$$4^{-3} =$$
 b) $(-5)^0 =$ c) $3^{-2} =$

c)
$$3^{-2} =$$

d)
$$6^{-1} =$$

e)
$$(-4)^{-2}$$
 =

<u>Simplifying Exponential Expressions</u>

What is the simplified form of each expression?

a)
$$5a^3b^{-2}$$

b)
$$\frac{1}{x^{-5}} =$$

Got it? What is the simplified form of each expression?

a)
$$x^{-9} =$$

b)
$$\frac{1}{n^{-3}} =$$

d)
$$\frac{2}{a^{-3}} =$$

e)
$$\frac{n^{-5}}{m^2} =$$

Evaluating an Exponential Expression

What is the value of $3s^3t^{-2}$ for s = 2 and t = -3?

Got it? What is the simplified form of each expression if n = -2 and w = 5?

b)
$$\frac{n^{-1}}{w^2}$$

c)
$$\frac{n^0}{w^6}$$

$$d) \frac{1}{nw^{-1}}$$

5.2 Division Properties of Exponents

Dividing Powers with the Same Base				
To divide powers with the same base, subtract the exponents.	$\frac{a^m}{a^n} =$	Examples: $\frac{x^4}{x^7} =$		

Why it Works: Use repeated multiplication to rewrite the product of powers: $3^8 \div 3^6 = ?$

1. Expand each into the product numbers to the right.

$$\frac{3^8}{3^6} = \left(\frac{}{} \right) = \left(\frac{}{} \right)$$

Dividing Algebraic Expressions

What is each expression written using each base only once?

a) $\frac{4x^8}{2x^3} =$ b) $\frac{9m^2n^4}{-12m^5n^3} =$ c) $\frac{-9k^6j^2}{36kj^5} =$

$$a) \quad \frac{4x^8}{2x^3} =$$

b)
$$\frac{9m^2n^4}{-12m^5n^3} =$$

c)
$$\frac{-9k^6j^2}{36ki^5}$$
 =

$$d) \quad \frac{5^{-2}a^{-3}b^7}{2a^5b^2} =$$

Raising a Quotient to a Power				
To raise a quotient to a power, raise the numerator and the denominator to the power and simplify.	$\left(\frac{a}{b}\right)^n =$	Examples: $\left(\frac{3}{5}\right)^3 =$		

Why it Works: Use repeated multiplication to rewrite the product of powers:

1. Expand each into the product numbers to the right.

$$\left(\frac{x}{y}\right)^3 =$$

Raising a Quotient to a Power

- a) What is the simplified form of $\left(\frac{z^4}{5}\right)^3$?
- b) What is the simplified form of $\left(\frac{4}{r^3}\right)^2$?

Raising a Quotient to a Negative Power				
To raise a quotient to a negative power, raise the numerator and the denominator to the power and simplify.	$\left(\frac{a}{b}\right)^{-n} =$	Examples: $ \left(\frac{h}{g}\right)^{-3} = $		

<u>Simplifying an Exponential Expression</u>

a) What is the simplified form of $\left(\frac{2x^6}{v^4}\right)^{\frac{1}{2}}$?

b) What is the simplified form of $\left(\frac{a}{5h}\right)^{-2}$?