<u> Distance and Midpoint Formulas</u>

Line Segment: Part of a line that has two endpoints. The line segment is named by these two endpoints. Midpoint: The distance halfway between two points

Segment Bisector: A line that cuts a second line directly in half (located at the midpoint).

The Distance Formula	The Midpoint Formula	

Example 1:

What is the distance between points (1, 1) and (7, 9)?

The Distance Formula

Find the distance between each of the following points.

a) R(5, 1) and S(-3, -3)	
--------------------------	--

b) T(0, 0) and P(12, 8)

d) A (2, 1) and B (6, 4)

- c) J (-1, 3) and K (11, 2)
 - triangle brevertiges at (1, 2), (2, 2), and (1, 1). What is the generalized to perimeter of the trian
- e) A triangle has vertices at (1, 3), (2, -3) and (-1, -1). What is the approximate perimeter of the triangle? Draw a picture to help.

Discovering The Midpoint Formula: Find the midpoint between each of the following points.

a) E (-2, 6) and F (10, -8) – use the graph to the left.

b) M(11, -2) and N(-9, 13)

c) R is the midpoint of segment \overline{PS} . Q is the midpoint of segment \overline{RS} . P is located at (8, 10) and S is located at (12, -6). What are the coordinates of Q? Draw and label a picture to help.

Math 1

The midpoint of a line segment is the point M on the segment that is the same distance form each endpoint, (x_1, y_1) and (x_2, y_2) . The coordinates of M are given by the midpoint formula.

$$M\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Example 2:

What is the midpoint of line segment with end points (3, 6) and (-5, 1)?

Practice:

Find the midpoint of the line segment joining the two points.

1. (-1, 3), (11, -2) 2	2. (2, 1), (6, 4)	3. (-4, 1), (11, 9)
--------------------------------------	-------------------	----------------------------

Midpoint Formula: Working It Backwards

Find the coordinates of C if B (4, 3) is the midpoint of AC and A is located at (6, -12).

Putting it Together

What is the approximate length of the segment \overline{CD} if \overline{CD} bisects \overline{AB} at C and A (3, 5), B (7, -3), and D (-4, 2)? Draw and label a picture to help