Line Segment: Part of a line that has two endpoints. The line segment is named by these two endpoints.
Midpoint: The distance halfway between two points
Segment Bisector: A line that cuts a second line directly in half (located at the midpoint).

The Distance Formula	The Midpoint Formula

Example 1:

What is the distance between points $(1,1)$ and $(7,9)$?

The Distance Formula

Find the distance between each of the following points.
a) $R(5,1)$ and $S(-3,-3)$
b) $T(0,0)$ and $P(12,8)$
c) $\mathrm{J}(-1,3)$ and $\mathrm{K}(11,2)$
d) $A(2,1)$ and $B(6,4)$
e) A triangle has vertices at $(1,3),(2,-3)$ and $(-1,-1)$. What is the approximate perimeter of the triangle? Draw a picture to help.

Discovering The Midpoint Formula: Find the midpoint between each of the following points.

a) $E(-2,6)$ and $F(10,-8)$ - use the graph to the left.
b) $M(11,-2)$ and $N(-9,13)$
C) R is the midpoint of segment $\overline{P S}$. Q is the midpoint of segment $\overline{R S}$. P is located at $(8,10)$ and S is located at $(12,-6)$. What are the coordinates of Q ? Draw and label a picture to help.

The midpoint of a line segment is the point M on the segment that is the same distance form each endpoint, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. The coordinates of M are given by the midpoint formula.

$$
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Example 2:

What is the midpoint of line segment with end points $(3,6)$ and $(-5,1)$?

Practice:

Find the midpoint of the line segment joining the two points.

1. $(-1,3),(11,-2)$
2. $(2,1),(6,4)$
3. $(-4,1),(11,9)$

Midpoint Formula: Working It Backwards

Split Formula in Two:

1. Plug in what you know
2. Solve for X_{2}
3. Plug in what you know
4. Solve for X_{2}

Find the coordinates of C if $B(4,3)$ is the midpoint of $A C$ and A is located at $(6,-12)$.

Putting it Together

What is the approximate length of the segment $\overline{C D}$ if $\overline{C D}$ bisects $\overline{A B}$ at C and $A(3,5), B(7,-3)$, and $D(-4,2)$? Draw and label a picture to help

