SWBAT write numbers in scientific and standard notation. SWBAT to compare and order numbers using scientific notation.

Introduction to Scientific Notation:

- You can use powers of 10 to write and compare very large or very small numbers more easily.
- Scientific Notation is a shorthand way to write numbers using powers of 10

Key Concept: A number is scientific notation is written as the production of two factors in the form a $\times 10^{n}$, where n is an integer and $1 \leq a<10$

Examples:

Recognizing Scientific Notation:

Writing a number in Scientific Notation:

- Use nonnegative exponents to write numbers greater than 1.

1,430,000,000

- Use negative exponents to write numbers between 0 and 1
.0000000001
What is each number written in scientific notation?
a. 678,000
b. 0.000032
C. $51,400,000$
d. 0.0000007

Writing a Number in Standard Notation:
Weight of an Asian elephant: 5.5×10^{6} gram
Weight of an ant: 3.1×10^{-3}

What is each number in parts (a)-(d) written in standard notation?
a. 5.23×10^{7}
b. 4.6×10^{-5}
c. 2.09×10^{-4}
d. 3.8×10^{12}

Comparing Numbers in Scientific Notation:

Indian Ocean: $7.49 \times 10^{7} \quad$ Atlantic Ocean: $1.06 \times 10^{8} \quad$ Artic Ocean: $1.41 \times 10^{7} \quad$ Pacific Ocean: 1.8×10^{8}

Using Scientific Notation to Order Numbers

What is order of $49.7 \times 10,4.17 \times 10^{7}, 0.047 \times 10^{9}$, and 495 from least to greatest?

Scientific Calculator: You can use a scientific calculator to work with numbers in scientific notation. The E on a calculator readout stands for exponentiation. The readout 1.35 E 8 means 1.35×10^{8}, or $135,000,000$. The EE key lets you input an exponent for a power of 10 . So to enter 4×10^{6}, you enter 46.

Practice: enter the following into your calculator
8.3×10^{5}
4.12×10^{22}
7.1×10^{-5}

Addition and Subtraction: Before numbers in scientific notation can be added or subtracted, the exponents must be equal.
$\left(3.4 \times 10^{2}\right)+\left(4.57 \times 10^{3}\right)=$
$\left(9.70 \times 10^{6}\right)+\left(8.3 \times 10^{5}\right)=$
$\left(3.67 \times 10^{2}\right)-\left(1.6 \times 10^{1}\right)=$

Multiplication: When numbers in scientific notation are multiplied, only the number is multiplied. The exponents are added.
$\left(2.00 \times 10^{3}\right)\left(4.00 \times 10^{4}\right)=\quad\left(6.0 \times 10^{3}\right) \times\left(1.5 \times 10^{-2}\right)=$
$\left(1.5 \times 10^{-2}\right) \times\left(8.0 \times 10^{-1}\right)=$

Division: When numbe4s in scientific notation are divided, only the number is divided. The exponents are subtracted.
9.6×10^{7}
1.60×10^{4}

Word Problems

In July 2010 there were approximately 500 million facebook users. In July 2011 there were approximately 750 million facebook users. How many more users were there in 2011 ? Write your answer in scientific notation

A state government has 5.7×107 dollars invested in a pension fund for retired employees. It expects the investment to double in value every 8 years. What is the investment after 8 years, 16 years and 24 years. Write your response in scientific notation.

The mass of one oxygen atom is $2.66 \times 10^{-26} \mathrm{~kg}$. A cylinder contains 5.97×10^{23} oxygen atoms. What is the mass of the oxygen?

The average distance from Earth to the sun is $1.5 \times 10^{11} \mathrm{~m}$. The speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Approximately how long does it take for light to travel form the sun to Earth?

In a vacuum, light travels at the speed of 3×10^{8}. In air, light travels at a speed of 2.3×10^{8}. How many times faster does light travel in a vacuum than air?

The distance between Mars and Earth varies over time. The greatest distance between the two planets is about $4.01 \times 10^{8} \mathrm{~km}$. The shortest distance is $5.45 \times 10^{7} \mathrm{~km}$. What is the difference in km between these distances written in scientific notation?

In the year 2006 there were 8.512×10^{8} one dollar bills printed. In the year 2007 there were 8.32×10^{7} one dollar bills printed. How many more dollar bills were printed in 2006 than 2007?

