You can change the expression $x^{2}=b x$ into a perfect-square trinomial by adding \qquad . This process is called \qquad . The process is the same whether b is \qquad or \qquad .

Example 1: Finding c to complete the square.
What is the value of c that $x^{2}-16 x+c$ is a perfect square trinomial?

Practice:

a. $x^{2}+18 x+c$
b. $z^{2}+22 z+c$
c. $p^{2}-30 p+c$
d. $k^{2}-5 k+c$
e. $g^{2}+17 g+c$
f. $q^{2}-4 q+c$

Example 2: Solve $x^{2}+b x=c$
What are the solutions of the equation $x^{2}+6 x=216$?
Your turn: $\dagger^{2}-6 \dagger=247$

To solve an equation in the form $x^{2}+b x+c=0$, first \qquad the constant term c from \qquad of the equation.

Example 3: Solving $x^{2}+b x+c=0$
What are the solutions of the equation $x^{2}-14 x+16=0$
Your turn: $x^{2}+9 x+15$

Practice

a. $g^{2}+7 g=144$
b. $r^{2}-4 r=30$
c. $m^{2}+16 m=-59$
d. $a^{2}-2 a-35=0$
e. $m^{2}+12 m+19=0$
f. $w^{2}-14 w+13=0$

Gardening You are planning a flower garden consisting of three square plots surrounded by a 1 -ft border. The total area of the garden and the border is $100 \mathrm{ft}^{2}$. What is the side length x of each square plot?

