Factor	
GCF	
Prime	

Factoring is like \qquad , or using the distributive property backwards.

To find the GCF or (
), we have to:

1. See what they ALL have in common (including numbers and variables)
2. Remove what is in common
3. Show what is left
4. Check by redistributing what you removed!

Directions: Find the GCF in each of the following.

1. $2 x^{2}-10 x$
2. $8 x^{2} y^{5}+4 x^{5} y^{3}+12 x^{3} y^{3}$
3. $24 x^{5} y^{2}+16 x^{7} y^{3}+40 x^{3} y^{2}$
4. $4 x^{8} y^{4}+2 x^{3} y^{3}+12 x^{5} y^{6}$
5. $27 x^{6} y^{7}+81 x^{2} y^{3}+18 x^{3} y^{4}$
6. $3 x^{3}+12 x^{2}+9 x$
7. $8 x-56 x^{3}$
8. $4 a^{4} b-16 a^{2} b^{2}+4 a b^{4}$
9. $6 a^{3} b^{2}-12 a^{2} b^{3}+18 a b$

Factor by Grouping: A way of factoring a polynomial with \qquad terms!

Essential Understanding: polynomials of a degree greater than 2 can be factored

GCF Method

Step 1: Put parenthesis around first two terms and second two terms.
Step 2: Factor out a GCF if one exists from each group
Step 3: Write your new factors as binomials Step 4: Check your factors by multiplying them together and getting the original problem.

The Backwards Box Method

Step 1: Factor out a GCF if one exists
Step 2: Put each term into the "box"
Step 3: Factor out the greatest common factor and put
it on top (or on the side) of each box
Step 4: Check your factors by multiplying them together and getting a solution within each box
Step 5: Write your new factors as binomials!

Example 1: Factor $3 n^{3}-12 n^{2}+2 n-8$

Example 2: Factor $8 t^{3}+14 t^{2}+20 t+35$
Example 3: Factor $12 x^{3}+3 x^{2}+20 x+5$

Factor a Polynomial completely: Remember to remove the GCF first.
Example 3: Factor $45 w^{4}-36 w^{3}+15 w^{2}-12 w$
Example 4: Factor $6 g^{3}+18 g^{2}+60 g+180$

Got it? Factor each of the following by grouping.

1. $21 x^{3}-28 x^{2}-6 x+8$
2. $8 t^{3}+36 t^{2}+2 t+9$
3. $6 x^{3}+9 x^{2}+2 x+3$
4. $21 x^{3}+6 x^{2}-28 x-8$
5. $32 m^{3}+72 m^{2}-80 m-180$
6. $30 b^{4}-45 b^{3}-10 b^{2}+15 b$
7. $60 a^{5}-72 a^{4}-210 a^{3}+252 a^{2}$
8. $12 e^{4}+18 e^{3}+36 e^{2}+54 e$

Word Problem: The toy shown below is made of several bars that can fold together to form a rectangular prism or unfold to form a ladder. What expressions can represent the dimensions of the toy when it is folded up? Use factoring

Step 1:

Step 2:

Step 3:

