Use the Distributive Property to simplify sums or differences of radical expressions by combining like radicals. Like radicals such as \qquad have the same radicand. Unlike radicals, such as \qquad have different radicands.

Combining Like Radicals.

a. $6 \sqrt{11}+9 \sqrt{11}$
b. $\sqrt{3}-5 \sqrt{3}$
c. $7 \sqrt{2}-8 \sqrt{2}$
d. $5 \sqrt{5}+2 \sqrt{5}$

Simplifying to Combine Like Radicals

a. $5 \sqrt{3}-\sqrt{12}$
b. $4 \sqrt{7}+2 \sqrt{28}$
c. $5 \sqrt{32}-4 \sqrt{18}$

Practice: pg. 616 \# 9-20

Multiplying Radical Expressions

Example 1: $\quad \sqrt{10}(\sqrt{6}+3)$
Example 2. $(\sqrt{6}-2 \sqrt{3})(\sqrt{6}+\sqrt{3})$

You Try!

a. $\sqrt{2}(\sqrt{6}+5)$
b. $(\sqrt{11}-2)^{2}$
c. $(\sqrt{6}-2 \sqrt{3})(4 \sqrt{3}+3 \sqrt{6}$

Conjugates are the sum and difference of the same two terms. Example: The product of conjugates is a difference of squares.

Rationalizing a Denominator Using Conjugates

Example 3: $\quad \frac{10}{\sqrt{7}-\sqrt{2}}$
Example 4: $\frac{-3}{\sqrt{10}+\sqrt{5}}$

Practice: pg. 616 \#30-35

Golden Rectangles appear frequently in nature and art. The ratio of the length to the width of a golden rectangle is $(1+\sqrt{5}) \cdot 2$.

Solving a Proportion Involving Radicals

Fiddlehead ferns naturally grow in spirals that fit into golden rectangles. What is the width w of the fern shown?

A golden rectangle is 12 in . long. What is the width of the rectangle? Write your answer in simplified radical form. Round to the nearest tenth of an inch.

