Solving Radical Equations

Equations with radicals that have variables in the radicand are called ______. To solve a radical equation ______.

Example 1: Solve
$$\sqrt{x} + 7 = 16$$
You Try! Solve $\sqrt{x} - 5 = -2$

Example 2: Solve $\sqrt{5t - 11} = \sqrt{t + 5}$
You Try! $\sqrt{7x - 4} = \sqrt{5x + 10}$

Example 3: Solve $\sqrt{3x} = \sqrt{x + 6}$
You Try! Solve $(2x)^{\frac{1}{2}} = (x + 5)^{\frac{1}{2}}$

Example 4: Solve $(7x+6)^{\frac{1}{2}} - (9+4x)^{\frac{1}{2}} = 0$

You Try! Solve $\sqrt{3x+2} - \sqrt{2x+7} = 0$

Example 5: Solve
$$\sqrt{x+1}+2=4$$
 You Try! Solve $-4\sqrt{6x+37} = -4$

Using Radical Equations:

The time t in seconds it takes for a pendulum of a clock to complete a full swing is approximated by the equation $t = 2\sqrt{\frac{x}{3.3}}$, where x is the length of the pendulum, in feet. If the pendulum of clock completes a full swin in 3 s, what is the length of the pendulum? Round to the nearest tenth of a foot.

You are making a tire swing for a playground. The time *t* in second for the tire to make one swing is given by $t = 2\sqrt{\frac{x}{3.3}}$ where x is the length of the swing in feet. You want one swing to take 2.5s. How many feet long should the swing be?

Math 1

Identifying Equations with Extraneous Solutions

Sometimes when we check radical equations, the solution doesn't work. We call these types of solutions ______. Example:

Example 6: Solve
$$n = \sqrt{n+12}$$
 You try! Solve $-y = \sqrt{y+6}$

Example 7: Solve $\sqrt{3y} + 8 = 2$

You Try! Solve
$$6 - \sqrt{2x} = 10$$

Practice: Complete the following problems in class for credit!

1. Solve $\sqrt{x+8} + 9 = 5$

2. Solve $\sqrt{4x+1} - 5 = 0$

3. Solve
$$3 + \sqrt{2x - 3} = 8$$

4. Solve $3\sqrt{6 - 3x} - 6 = 0$

5. Solve
$$\sqrt{x-3} = \sqrt{x+5}$$
 6. Solve $\sqrt{7p+5} = \sqrt{p-3}$

7. Solve
$$5(x+3)^{\frac{1}{2}} - 1 = 24$$

8. Solve $(3x)^{\frac{1}{2}} = (x+6)^{\frac{1}{2}}$

9. Solve $3\sqrt{4x+1} - 6 = 3$ 10. Solve $3 - \sqrt{4a+1} = 12$