Equations with radicals that have variables in the radicand are called \qquad . To solve a radical equation \qquad

Example 1: Solve $\sqrt{x}+7=16$
You Try! Solve $\sqrt{x}-5=-2$

Example 2: Solve $\sqrt{5 t-11}=\sqrt{t+5}$
You Try! $\quad \sqrt{7 x-4}=\sqrt{5 x+10}$

Example 3: Solve $\sqrt{3 x}=\sqrt{x+6}$
You Try! Solve $(2 x)^{\frac{1}{2}}=(x+5)^{\frac{1}{2}}$

Example 4: Solve $(7 x+6)^{\frac{1}{2}}-(9+4 x)^{\frac{1}{2}}=0$
You Try! Solve $\sqrt{3 x+2}-\sqrt{2 x+7}=0$

Example 5: Solve $\sqrt{x+1}+2=4$
You Try! Solve $-4 \sqrt{6 x+37}=-4$

Using Radical Equations:

The time t in seconds it takes for a pendulum of a clock to complete a full swing is approximated by the equation $t=2 \sqrt{\frac{x}{3.3}}$, where x is the length of the pendulum, in feet. If the pendulum of clock completes a full swin in $3 s$, what is the length of the pendulum? Round to the nearest tenth of a foot.

You are making a tire swing for a playground. The time t in second for the tire to make one swing is given by $t=2 \sqrt{\frac{x}{3.3}}$ where x is the length of the swing in feet. You want one swing to take 2.5 s . How many feet long should the swing be?

Sometimes when we check radical equations, the solution doesn't work. We call these types of solutions
\qquad . Example:

Example 6: Solve $n=\sqrt{n+12}$
You try! Solve $-y=\sqrt{y+6}$

Example 7: Solve $\sqrt{3 y}+8=2$
You Try! Solve $6-\sqrt{2 x}=10$

Practice: Complete the following problems in class for credit!

1. Solve $\sqrt{x+8}+9=5$
2. Solve $\sqrt{4 x+1}-5=0$
3. Solve $3+\sqrt{2 x-3}=8$
4. Solve $3 \sqrt{6-3 x}-6=0$
5. Solve $\sqrt{x-3}=\sqrt{x+5}$
6. Solve $\sqrt{7 p+5}=\sqrt{p-3}$
7. Solve $5(x+3)^{\frac{1}{2}}-1=24$
8. Solve $(3 x)^{\frac{1}{2}}=(x+6)^{\frac{1}{2}}$
9. Solve $3 \sqrt{4 x+1}-6=3$
10. Solve $3-\sqrt{4 a+1}=12$
