SWBAT factor trinomials in the form $a x^{2}+b x+c$ with positive factors and an " a " term equal to 1 .
Essential understanding: You can write some trinomials of the form $a x^{2}+b x+c$ as the product to two binomials. Example:

How to Factor a Trinomial in the Form ax ${ }^{2}+b x+c$

Step 1: Multiply your first term (a) and your last term (c)
Step 2: Set up your \boldsymbol{X}-Factor (what multiplies to "ac" that adds to "b")
Step 3: Replace the original (b) term with the two numbers you just came up with
Step 4: Factor by grouping
Step 5 Factor out another GCF if one exists
Step 6: FOIL to check work! (Don't forget your GCF in front)!

How to Factor a Trinomial in the Form ax² $+b x+c$
Step 1: Multiply your first term (a) and your last term (c)
Factors
Step 2: Set up your T chart (what multiplies to "ac" that adds to "b
Step 3: Replace the original (b) term with the two numbers you just came up with
Step 4: Factor by grouping
Step 5 Factor out another GCF if one exists
Step 6: FOIL to check work! (Don't forget your GCF in front)!

Example 1: What is the factored form of $5 x^{2}+11 x+2$?
Factoring when ac is positive

Practice:
a. $6 x^{2}+13 x+5$
b. $2 x^{2}+13 x+6$
c. $3 d^{2}+23 d+14$

Example 2: What is the factored form of $3 x^{2}+4 x-15$.
Factoring when ac is negative

Practice:
a.
$10 x^{2}+31 x-14$
b. $5 z^{2}+19 z-4$
c. $2 k^{2}-13 k-24$

Example 3: The area of a rectangle is $2 x^{2}-13 x-7$. What are the possible dimensions of the rectangle? Use factoring

To factor a polynomial completely:
1.
2.

Example 4: Factor a monomial out completely.
$18 x^{2}-33 x+12$

Practice:

a. $12 p^{2}+20 p-8$
b. $v^{2}+34 v-30$
C. $6 s^{2}+57 s+72$

Your turn!

1. $3 x^{2}+7 x-6$
2. $x^{2}-8 x+16$
$3 \quad 3 x^{2}+8 x+5$
3. $x^{2}-12 x+20$
4. $7 d^{2}-26 d-8$
5. $x^{2}+12 x+11$
6. $6 t^{2}+25 t+11$
7. $c^{2}+c-20$
8. $5 x^{2}-11 x+2$
9. $6 x^{2}+23 x+7$
10. $20 x^{2}+80 x+35$
11. $x^{2}+12 x+36$
12. $2 x^{2}+11 x+14$
13. $x^{2}-x-6$
14. $2 x^{2}-x-15$

Factoring Mixed Review

Directions: Factor each of the following completely. Remember to use GCF, X-Factor, grouping, or a mix of all three!

1. $x^{2}+12 x+35$
2. $x^{2}-9 x+18$
3. $x^{2}+5 x$
4. $y^{2}-13 y+42$
5. $7 d^{2}-20 d-3$
6. $x^{2}+6 x-40$
7. $x^{2}+x-132$
8. $a^{2}-10 a b-24 b^{2}$
9. $6 y^{2}-6 y-540$
10. $2 x^{2}-2 x-60$
11. $m^{2}-3 m n+2 n^{2}$
12. $t^{2}+23 t+42$
13. $n^{2}+3 n-18$
14. $5 k^{2}-2 k-7$
15. $2 n^{2}+15 n+7$
16. $x^{2}+12 x+36$
17. $15 p^{3}-6 p^{2}-45 p$
18. $x^{2}+8 x-9$
