Difierence of Squares

Key Concept Factoring Perfect-Square Trinomials

Algebra For every real number a and b :

$$
\begin{aligned}
& a^{2}+2 a b+b^{2}=(a+b)(a+b)=(a+b)^{2} \\
& a^{2}-2 a b+b^{2}=(a-b)(a-b)=(a-b)^{2}
\end{aligned}
$$

Examples $x^{2}+8 x+16=(x+4)(x+4)=(x+4)^{2}$

$$
4 n^{2}-12 n+9=(2 n-3)(2 n-3)=(2 n-3)^{2}
$$

How to recognize a perfect - square trinomial.
-
\bullet

Example 1: Factoring a Perfect-Square Trinomial $x^{2}-12 x+36$

Practice:
a. $x^{2}+6 x+9$
b. $x^{2}-14 x+49$
c. $h^{2}+8 h+16$

Digital images are composed of thousands of tiny pixels rendered as squares. Suppose the area of a pixel is $4 x^{2}$ $+20 x+25$? What is the length of one side of the pixel?

Practice:
21

22.

23.

Key Concept Factoring a Difference of Two Squares

Algebra For all real numbers a and b :
$a^{2}-b^{2}=(a+b)(a-b)$
Examples $x^{2}-64=(x+8)(x-8)$
$25 x^{2}-36=(5 x+6)(5 x-6)$

Example 2: Factoring a Difference of Two Squares $z^{2}-9$

Practice:
a. $V^{2}-100$
b. $s^{2}-16$
c. $w^{2}-144$

Example 3: Factoring a Difference of Two Square.
$16 x^{2}-81$

Practice:
a. $25 d^{2}-64$
b. $36 v^{2}-25$
c. $64 q^{2}-81$

Example 4: Factoring out a Common Factor $\quad 24 \mathrm{~g}^{\mathbf{2}} \mathbf{- 6}$

Practice:
$\begin{array}{lll}\text { a. } 12 t^{2}-48 & \text { b. } 12 x^{2}+12 x+3 & \text { c. } 8 s^{2}-64 s+128\end{array}$

Work on these and what you do not finish is for homework.

Difiference of Squares: $x^{2}-y^{2}=(x-y)(x+y)$ or $x^{2}+0 x y-y^{2}$

1. $x^{2}-16$
2. $25-x^{2} y^{2}$
3. $81 x^{2}-4$
4. $4 x^{2}-1$
5. $16 x^{2}-121$
6. $49 x^{2}-36$

Mixed Review: factor out a GCF, and then apply a factor rule

1. $24 g^{2}-6$
2. $12 \dagger^{2}-48$
3. $12 x^{2}+12 x+3$
4. $5 x^{2}+13 x+30$
5. $100 x^{2}-81 y^{2}$
6. $2 x^{2}+12 x+10$
7. $x^{2}-12 x+36$
8. $4 x^{2}+20 x+25$
9. $4 x^{2}+24 x+36$
10. $x^{2}-14 x+49$
11. $16 m^{2}-72 m+81$
12. $81 r^{2}-90 r+25$

AREA: FACTORING APPLICATION

1. The area of a rectangle is $g^{2}+3 g-10$, find the dimensions of the rectangle.
2. The area of a square is $m^{2}+10 m+25$. Find the length of each side.
3. Find the perimeter of the square in question \#2.
4. The volume of a rectangular prism is $8 m^{3}-128 m$. Find the length of all three sides. How many sides are binomials?
5. The area of a rectangle is $10 w^{2}-19 w-15$. If one of the sides is $(2 w-5)$, what is the length of the other side?
6. Is it possible for a rectangle to have an area of $2 y^{2}+11 y+18$, if the side lengths are binomials?
7. The area of a rectangular book cover is $4 x^{2}-6 x-40$. The width of the book cover is $2 x-8$, what is the length of the cover?
8. The area of a rectangular swimming pool is $10 x^{2}-19 x-15$. The length of the pool is $5 x+3$. What is the width of the pool?
9. The area of a square rug is $4 k^{2}+12 k+9$. What is the perimeter of the rug?
10. Factor: $72 g^{2} h-43 g h+6 h$
11. Factor: $8 x^{3}+4 x^{2}-18 x-9$
12. Which binomial is a factor of $2 n^{2}-32 n$?
a. $2 n-8$
b. $n+16$
c. $\mathrm{n}-16$
d. $n+4$
13. Which binomial is a factor of $14 a^{2}-15 a+4$?
a. $7 a+2$
b. $14 a-1$
c. $7 a-1$
d. $7 a-4$
